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Abstract

This paper examines a system consisting of a deformable body with a slipping cable in its interior. The cable may
be employed both as an actuator and as a sensor for the body, thanks to the particular coupling arising between

local cable strain and global body deformation provided by the cable slip. The system is analyzed by interpreting
the coupling as a constraint with global nature exerted by the deformable body on the cable deformation. The
descriptors of the reduced kinematics of the system are established and the formulation is developed according to

the exact deformation theory. Successively, the problem is linearized in proximity of a known solution and the
particular case of homogeneous, massless cable is presented. A simple but meaningful application is also
reported. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the possible techniques for obtaining a control on the strain or stress state of a deformable

elastic solid consists of introducing at its interior a cable anchored at the ends but free to slip along a

path which remains linked to the body. The possibility of controlling the cable traction force, e.g. by

means of thermoelastic or piezoelectric e�ects or through a direct control on deformation by extracting

a portion of the cable from one anchorage, permits the production of pre®xed stress and strain ®elds,

whose characteristics are ruled by the geometry of the path followed by the cable. On the other hand,

whenever it is possible to measure the cable traction, the coupled system can be employed for obtaining

information on the body deformation. The coupled system can therefore be employed both as an
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actuator and a sensor, and the applications are of practical interest in structural mechanics, robotics,

biomechanics and measurement techniques.

The cable slipping leads to a particular coupling relating the local cable strain to the global body

deformation. This forms the most characteristic aspect of the system's behaviour and permits us to

provide or measure the e�ects on the whole body by means of control or measurement of the cable state

at one point only.

The existing literature on this topic mainly regards simple and very speci®c problems of structural

engineering (e.g. Naaman and Alkhairi, 1991; Alkhairi and Naaman, 1993) Formulations in a more

general context are presented in Dall'Asta (1995) and Dall'Asta and Leoni (1997). These latter studies

are dedicated to the static case and consider a homogeneous cable free from mass forces. In this case,

Nomenclature

a cable stetch
B body
b mass force in the body
C cable
E tangent to the cable C in the reference con®guration
e deformation of E
Åe tangent to the deformed cable
f surface traction on the body B
G tangent to the curve H in the reference con®guration
gp deformation of G
Ågp tangent to the deformed curve
H curve traced on the body
H curve H in the reference con®guration
hp deformed curve H
L length of the cable C and curve H in the reference con®guration
lp length of the deformed curve H
P position of the body points in the reference con®guration
p deformation of the body B
R position of the cable points in the reference con®guration
r deformation of the cable C
S ®rst Piola±Kirchho� stress tensor
ÅS second Piola±Kirchho� stress tensor
T Cauchy stress tensor
t traction force on the cable C
u displacement ®eld of the body B
w strain energy density of the body B
Xi material co-ordinate of the body points
a descriptor of the constrained cable deformation
b mass force in the cable
Z curvilinear abscissa of the curve H
r material cable points
x descriptor of the constrained cable displacements
o strain energy density of the body C
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cable strain is uniform and its kinematics can be entirely deduced from the sole three-dimensional body
deformation.

This paper intends to analyze a more general situation, where the cable is no longer homogeneous
and may undergo mass forces related to acceleration or external ®elds. Here, the cable is not
homogeneous and its kinematics are no longer deducible from the body deformation, even if it is still
subjected to a constraint with a global nature, due to the fact that the cable path is linked to the body.
This leads to richer kinematics and makes it necessary to de®ne new entities for its description, so that
the treatment becomes substantially di�erent and more complex with respect to that previously
analyzed.

In particular, the system is analyzed by assuming a three-dimensional continuum model for the body
while the cable is schematized by means of a uni-dimensional model. The coupling between the
components is translated into analytical form by a condition of global constraint (see Antman and
Marlow, 1991) which reduces the set of possible deformations of the cable on the basis of the body
deformation and the initial geometry of the path. An attempt is made to furnish a convenient
representation of the constraint deformation by introducing a unique independent scalar valued function
having the rule of kinematic descriptor of the cable and furnishing its deformation. The system
description continues by stating the balance conditions on the basis of the D'Alembert principle. This
permits establishing the dynamical entities which are the dual of the descriptors of the cable
deformation. A local interpretation of the results evidences some characteristic aspects of the reactive
forces arising at the interface between cable and body. Finally, the linearized theory obtained from the
complete theory by assuming that the motion develops in a su�ciently small neighbourhood of the
reference con®guration, is described. Beyond the practical interest, the linear theory simpli®es some
aspects of the coupling between slipping cable and body and can be useful for the comprehension of the
system behaviour.

Successively, the case of an homogeneous massless cable is examined. In this case, the set of the
constrained deformation is reduced further and, even if it may be deduced from the previous as a
particular case, it is convenient to develop a slightly di�erent and autonomous formulation.

Finally, a simple applicative example concerning the e�ects of an internal stretched cable on the
eigenfrequencies of a plate is described.

2. Kinematics

The analyzed system consists of a solid deformable body and a cable; their coupling is obtained by
linking the cable ends to two points of the body and by constraining the cable to follow a path provided
by a curved tunnel in the interior of the body (Fig. 1); the cable can slip along its path. In this paper, a
description of the system is presented by modeling the cable as a uni-dimensional manifold embedded
into the remaining part of the system modeled as a three-dimensional manifold.

The particles of the body B, consisting of the deformable solid and its interior tunnel, are identi®ed
by means of the three material co-ordinates (Xi; i = 1,2,3) with respect to the orthonormal basis {Ai }
which localize their positions P(Xi )=XiAi in the reference con®guration, letting O be the domain P(B)
occupied by the body.

Furthermore, let H={Xi=Hi(Z ); Z $ IZ=[0,s ]} be a subset of B which describes the regular curve
H(Z )=Hi(Z )Ai in the reference con®guration. This curve models the axis of the tunnel in which the
cable is disposed and along which it can slip. In reality, both these entities, the cable and its path, are
three-dimensional but they have one dimension su�ciently greater than the others to justify the uni-
dimensional idealization. The tangent vector H,Z is de®ned everywhere, its modulus |H,Z| is always
positive and the unit tangent vector is denoted by G(Z )=H,Z/|H,Z| (commas denote derivatives with
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respect to spatial variables). The indexes O and S are used for labeling the values assumed by a generic
quantity at the two material points (XOi ), (XSi ), located at the ends of the curve. In the reference
con®guration, these points occupy the positions PO=H(0)=XOiAi, PS=H(s )=XSiAi.

The cable C is a uni-dimensional manifold whose material points are identi®ed by means of the
material co-ordinate r $ Ir=[0,s ] and the cable describes the curve R(r )=Ri(r )Ai in the reference
con®guration. In this con®guration, the curves R and H coincide in the sense that the cable particle
labeled by z $ [0,s ] occupies the same position of the body material point (Hi(z )) lying on the curve and
labeled by the same curvilinear abscissa, i.e.

R�z� � H�z�: z 2 �0,s� �1�
Consequently, the cable ends occupy the same positions of the body particles (XOi ) and (XSi ). It may

be useful to remark that the choice of assuming r and Z to de®ne the same position in the reference
con®guration derives from the observation that the most convenient way to express a parametrized
space curve is usually unique; it should however not be forgotten that r $ Ir and Z $ IZ are two
substantially di�erent quantities because the former denotes a material particle of the cable, while the
latter is a parameter denoting a material particle of the body, through the functions Hi(Z ). From this, it
follows that the previous correspondence will be lost in con®gurations which are di�erent from that
assumed as reference. The function E(r ) denotes the unit tangent vector R,r/|R,r|, coinciding with G for
Z=r, and the length of the cable from its former anchorage point PO to the generic material particle r
is described by means of the function

L�r� �
�r
0

jR,zjdz: �2�

The motion of the system components is described by the two functions p(Xk;t )=pi(Xk;t )Ai and
r(r;t )=ri(r;t )Ai which furnish the positions of the body B and the cable C at a generic instant t by
starting from the reference con®guration. Hereinafter, it is assumed that the ®eld p is compatible with
the body constraints.

The deformation description in the neighborhood of a body material point is furnished by the
quantity Hp(Xk;t )=pi,j (Xk;t )Ai 
 Aj, velocity and acceleration are denoted by Çp�Xk;t� � _pi�Xk;t�Ai and
Èp�Xk;t� � �pi�Xk;t�Ai (dots denote partial derivatives with respect to time). It is here assumed that p is
orientation-preserving and locally invertible, at least almost everywhere, on O, i.e. det(Hp) > 0.

Fig. 1. Cable±body system.
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Furthermore, the body motion is su�ciently regular in the neighbourhood of H to permit de®ning its
trace p(H;t ) on the curve H such that |HpH,Z| > 0. The complex question of global invertibility is
beyond the scope of this paper.

The motion p(H;t ) of the curve H rigidly linked to the body can be deduced through the functions
Hi and the notation hp (Z )=p(Hi(Z );t ) will be used for denoting the vector function describing this
deformed curve in correspondence with the body deformation p present at the instant t. The derivatives
with respect to the parameter Z can also be related to the body deformation by means of the relations

hp,Z�Z� � gp�Z� � rp�Hi�Z�;t�H,Z�Z� �3�

and

hp,ZZ�Z� � rrp�Hi�Z�;t��H,Z�Z� 
H,Z�Z�� � rp�Hi�Z�;t�H,ZZ�Z�: �4�

Its modulus |hp,Z| is assumed to be positive and the unit tangent vector Ågp�Z� � hp,Z=jhp,Zj is de®ned.
The second derivative, hp,ZZ has a component in the direction of the curve normal, proportional to the
actual curvature of the path. The velocity and acceleration of the body material points lying on the
curve will be denoted by

Çhp�Z� � Çp�Hi�Z�;t� �5�

and

Èhp�Z� � Èp�Hi�Z�;t�, �6�

while the time derivative of H,Z will be denoted by

Çhp,Z�Z� � r Çp�Hi�Z�;t�H,Z�Z�: �7�

It is useful for the following description of the cable constraint to evaluate the length s of the curve
from its origin at PO to the generic point (Hi(Z )). This length is furnished by

s � gp�Z� �
�Z
0

jhp,zjdz, �8�

where gp: IZ 4 [0,lp ] is an invertible function related to the actual deformation and lp denotes the total
length of the curve in the actual con®guration. From this, it can also be deduced that its inverse,
gÿ1p :�0,lp�4IZ, also exists and gÿ1p �s� provides the curvilinear co-ordinate Z of the point which is located
at the end of a curve tract with assigned length s. At each instant t, a di�erent function gp is de®ned as
a consequence of the body motion p.

A description of the local deformation of the cable can be furnished by the vector valued function
r,r (r;t ) or, equivalently, by means of e(r;t )=r,r/|R,r| which identi®es the vector provided by the
transformation of the tangent vector E(r ). The local elongation is measured by means of the scalar
quantity a(r;t )=|r,r|/|R,r|, so that, by introducing the unit tangent vector in the deformed
con®guration, Åe�r;t� � r,r=jr,rj, the local deformation can also be written in the form r,r: � ajR,rjÅe: The
same parametrization with respect to the length, previously used for the curve H, can now be
introduced at the instant t in the form

s � lr�r� �
�r
0

ajR,zjdz, �9�
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where lr: Ir 4 [0,lr ] is an invertible function related to the cable deformation r active at the instant t
and lr is the actual total length of the cable.

It is evident that not all the deformations r(r;t ) are suitable for describing the cable motion since it
must remain within the curve hp (Z ), even if its material points are free to slip along that curve,
consistently with the assumption of local invertibility. This situation introduces a global constraint on r
(Antman and Marlow, 1991) which requires that the co-domains p(H;t ) and r(C;t ) coincide and cannot
be reduced to a local constraint prescribing simple restrictions on the local deformation. These latter
assertions are intuitive statements that must be translated into a more precise condition on r providing
the manifold of admissible deformations. The constraint condition for r can be obtained by taking
advantage of the two parametrizations with respect to the curve length and requiring that each cable
material point r tracing an arc with length s=lr(r ), occupies the position of that body point lying on
the curve H and labeled by Z � gÿ1p �s�, which is related to an arc on H with the same length, i.e.

r�r;t� ÿ
�

hp gÿ1p  lr
�
�r� � 0 r 2 Ir: �10�

This also implies that lr=lp and furnishes a prescription which varies in time as a consequence of the
body motion p. The previous condition on deformations can be replaced by an alternative condition on
the local deformation measures by means of Eq. (9) and by observing that gÿ1p ,l � gp,Z: It relates r,r to
the strain measure a and the curve unit tangent vector Ågp�Z� � gp=jgpj by means of the following
relations

r,p�r;t� ÿ a�r;t�jR,rj
�

Ågp gÿ1p  lr
�
�r� � 0 �11�

and

r�0;t� ÿ hp�0� � 0: �12�
This di�erential form shows that the local strain measure a of the cable is not related to the

deformation of its neighborhood but depends on the global deformation of the body along the path via
gÿ1p and lr and cannot be expressed by an algebraic law but requires a functional dependence also
involving the deformation p and the initial geometry described by H.

Both the previous expressions given to the constraint permit formulating the problem by means of
Lagrange multipliers, even though it is more convenient to obtain a representation of the admissible
cable deformation in order to reduce the dimension of the problem. Eq. (10) may be useful for this
scope, simply by observing that hp and gÿ1p derive from the body deformation while each invertible
function l(.;t ): Ir 4 [0,lp ] may replace the particular function lr to furnish a deformation r which is
admissible at the instant t. The set of invertible functions from Ir to [0,lp ] provides all the functions r
satisfying the constraint and can be adopted to represent the constrained kinematics of the cable. This is
not however pro®table because deriving the function gÿ1p from the curve deformation hp is often
complex, while it is more convenient to describe the cable deformation r at the instant t by means of the
function a�:,t� � gÿ1p  l: Ir 4 IZ which is equally a generic invertible function (a,r > 0), thanks to the
property of gÿ1p , and permits us to represent admissible cable deformations in the form

r�r;t� � �hp a��r;t� � hp�a��r;t� � p�Hi�a�r;t��;t� �13�

without having to evaluate the inverse of gp. The relation Z=a(r;t ) establishes a relation between the
points of C and H which occupies the same spatial position at the instant considered and describes the
slipping a(r;t )ÿr of the cable points along the path.

In conclusion, the system's motion is completely de®ned by the two functions a and p so that its
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kinematics, and in particular the kinematics of the constrained cable, can be described with reference to
these two descriptors only. The nonlinear dependence Eq. (13) of the cable deformation on both the
kinematical descriptors is somewhat involved and provides a strict coupling between body deformation,
cable slipping and path geometry. Hereinafter, we will attempt to make the dependence of generic
quantities on these kinematic descriptors p and a explicit as long as possible, in order to show and
analyze their coupling while the dependence on the material co-ordinate r, Xi and time t will be omitted,
when ambiguities do not arise.

The strain measure a and |r,r| are strictly positive as a consequence of the regularity assumed for a
and p and it is no longer necessity to introduce |r,r| > 0 as an independent assumption. Furthermore, it
can be observed that all the deformation parameters a, a,r and hp,Z (a ) contribute to the local strain

r,r � hp,Z�a�a,r �14�
from which the other quantities a, e and �e can be easily deduced. The notation hp,Z (a ), adopted here
and in the sequel, means that the derivative of hp with respect to its independent variable Z is evaluated
for Z=a(r;t ).

The velocity of the cable particles expressed by means of the kinematics descriptors, assumes the form

Çr � hp,Z�a�_a� Çhp�a�, �15�
where the ®rst term expresses the velocity due only to a and occurring even when the path hp does not
move, while the second term is due to the transport provided by the motion of the path H. The
acceleration assumes the following more complex form:

Èr � hp,Z�a��a� hp,ZZ�a�_a2 � 2 Çhp,Z�a�_a� Èhp�a�, �16�
where the ®rst two terms account for the body acceleration due to the motion along the ®xed curved
path, the third term represents the Coriolis acceleration and the last term is due to the path transport.

3. Balance conditions

In order to achieve a global balance condition for the system, it is assumed that the body consists of a
simple hyperelastic material (Truesdell and Noll, 1965) and, consequently, at every material point the
positive real valued function w(Xi;C) is de®ned and describes the density of elastic potential energy by
starting from the local strain measure C=(Hp)THp. This energy tends to in®nity when |Hp| or det Hp
tends to zero or to in®nity. Once w is known, it is possible to derive the measure of the active stress
furnished by the ®rst and second Piola±Kirchho� stress tensors, respectively denoted by S and �S, by
means of the following relations:

S�Xi;rp� � rp �S�Xi;rp� � rp
@w�Xi;C �
@C

: �17�

Even if the geometry of the cable makes it convenient to describe the kinematics using a uni-
dimensional model, in real cases, its transverse dimension may equally play an important role in the
interaction between the components, despite its smallness, and this aspect can be accounted by
introducing some constitutive prescriptions for the region GWB occupied by the tunnel.

The cable is hyperelastic in the sense that a positive real valued function o(r;a ) is de®ned and
furnishes the elastic potential energy per unit length, measured in the reference con®guration, by starting
from the local deformation measure, described at each point r by e � aÅe: In particular, the requirement
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of frame indi�erence for o leads to the conclusion that o can depend on a only. As previously
mentioned, it is accepted that o may diverge to in®nity when its argument a tends to zero or in®nity.
The derivative t(r;a ) of o(r;a ) with respect to a denotes the intensity of the internal force produced in
the cable by the strain and the derivative with respect to e provides a vector t(r;e), tangent to the cable
path, which completely describes this force, i.e.

t�r;e� � t�r;a�Åe�r� � o,a�r;a�Åe�r�: �18�
The system description is completed by assigning two positive scalar functions m0(Xi ):O 4 R+ and

m0(r ):I4R+ to describe mass density on the body and on the cable, in the reference con®guration. The
function m0 is a mass per unit volume while the function m0 corresponds to a mass per unit length
multiplied by |R,r| so that its integral with respect to r furnishes the total mass of the cable.

With regard to the forces acting on the system, it is assumed that the body undergoes the mass forces
b(Xi;p) acting on O and the contact forces f(Xi;p,Hp) acting on the portion @Os of the boundary of O
(Ciarlet, 1988), while the points lying on the remaining boundary portion @Ou cannot move and
maintain the position occupied in the reference con®guration. The cable is subjected to a generic
distribution of mass forces b(r;p,a ). As previously, b is a force per unit mass multiplied by |R,r|.

The balance equation is written in its weak form, on the basis of the Lagrange±D'Alembert principle
(Truesdell and Toupin, 1960), as follows1:

hS�rp�,r ÃpiO � hm0� Èpÿ b�p��, ÃpiO ÿ hf�rp�, Ãpi@Os
� ht�r,r�,Ãr,riIr � hm0�Èrÿ b�,ÃriIr �b 8� Ãp,Ãr�

2 U; 8t 2 �0,1�:
�19�

The form given to the principle tacitly represents an assumption on the mechanical behaviour of the
system. In the case considered, it implies that no virtual power is joined to interaction forces between
cable and body, neither at the anchorages or along the curve. It is also observed that at this stage, the
balance condition must hold independently from the existence of the cable constraint. It is not within
the aim of this paper to analyze questions regarding the existence of the solution and it is simply
assumed that force, body stress and cable tractions permit de®ning the previous duality relations on the
space U of admissible deformations (p,r) de®ned on O� Ir.

In the case examined, where the cable undergoes the constraint previously described, the only
admissible deformations are expressed by the couple (p,a ) $ V and the test functions will be denoted by
Ãp�Xi �:O4R3 and â�r�:Ir4Ir: The admissible variations Ãr of the deformation r and the admissible
variations Ãr,r of its derivative r,r must be evaluated for � Ãp,â� lying on the space tangent to the constraint
in correspondence of the generic state (p,a ) existing at the considered instant t. Therefore, the variations
Ãr and Ãr,r can be deduced by linearizing Eqs. (13) and (14) and assume the following forms:

Ãr � hp̂�a� � hr,Z�a�â �20�
and

Ãr,r � hp̂,Z�a�a,r � hp,Z�a�â,r � hp,ZZ�a�a,râ, �21�
where it can be noted that the deformation does not only involve the derivative r Ãp and â,r but it
involves also the slipping â of the cable along the curve, mainly as a consequences of the path curvature.

1 The crochet h.,.i denotes duality between spaces of vector-valued functions de®nite on the same domain. The expressions hf,giO
and hf,giIr coincide with fOf�g dO and

�
Ir

f � g dr for integrable functions products.
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The previous balance condition becomes a linear form with respect to � Ãp,â�; the part concerning the
body remains the same while the part concerning the cable provides new duality relations between the
kinematical entities chosen to describe the constrained deformation of the cable and dynamical entities.
The cable traction t depends on Hp, a, a,r as a consequence of Eq. (14) and the term related to the
virtual cable strain is decomposed in the following manner:

ht,Ãr,riIr � ha,rt,h,r̂,Z�a�iIr � ht � hr,Z�a�,â,riIr � ha,rt � hr,ZZ�a�,âiIr : �22�
The vector hp̂,Z�a� which is a virtual deformation of H,Z (a ) due to the body deformation Ãp only (a

®xed), is put in duality, i.e. furnishes virtual power, with respect to the force t weighted by a,r, the
scalar value â,r describes a virtual strain on the ®xed path hp and produces virtual power with respect to
the scalar quantities t�hp,Z (a )=t|hp,Z (a )| provided by the scalar product of two parallel vectors, while â,
which describes a virtual slipping along the ®xed path hp, furnishes virtual power with respect to the
scalar quantity a,rt�hp,ZZ (a ) where hp,ZZ (a ) is generally not parallel to t as a consequence of the path
curvature. The dualities determined by the other term involving the cable are the following

hm0�Èrÿ b�,ÃriIr � hm0�Èrÿ b�,hp̂�a�iIr � hm0�Èrÿ b� � hr,Z�a�,âiIr , �23�

where the former term is related to the path transport due to the body deformation Ãp while the latter is
related to the slip â and acts on the components of the mass forces along the tangent direction.

The corresponding balance condition relevant to the angular momentum of momentum is not
reported because it does not furnish additional information, recalling that ÅS is, in this case, symmetric as
a consequence of the existence of the strain energy density w(Xi;C ).

The expression given to the D'Alembert principle does not evidence some local aspects of the
interaction arising between cable and body and, in particular, the absence of friction or other internal
tangential forces along the path. An attempt to furnish a local interpretation of the global balance
relation previously postulated, may be developed as follows.

If the reduced set of test functions Ãp whose support is contained in the domain �O is considered and
â � 0, then the generalized Gauû theorem leads to the condition

ÿDiv S�m0� Èpÿ b� � 0 �24�
which must hold, in a generalized sense, on the internal points of the body less the points lying on the
curve H.

On the other hand, if those variations involving only â are considered (i.e. Ãp � 0), the global form is
equivalent to the condition

�ÿt,r � m0�Èrÿ b�� � hp,Z�a� � 0 �25�
so that the component of the internal cable force in the direction of the tangent of the cable path must
be balanced by the component of b and Èr in the same direction.

The set of test functions Ãp de®ned on a compact support containing the tunnel G and, consequently,
the curve H, is now considered. In particular, this support consists of a tube containing G and having a
constant section G. Therefore, the domain of the test functions Ãp:G� �0,s�4R3 is provided by the
cartesian product G � [0,s ]. Taking into account the previous balance condition and the relation
t,r � Åe � 0, it is possible to rewrite the weak balance condition by separating Ãp in the component ÃpÅe �
�Åe
 Åe� Ãp in the direction of the curve tangent and Ãpn� Ãpÿ ÃpÅe normal to the curve:

�ÿDiv S�m0� Èpÿ b�� � Åe � 0 �26�
and
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hÿDiv S�m0� Èpÿ b�, ÃpniG � �ÿt,r � m0�Èrÿ b�� � Ãpn � 0: �27�
The component of body forces m0� Èpÿ b� in the direction tangent to the curve are balanced by the

stress divergence, such as occurs for the cable forces m0�Èrÿ b� with respect to the derivative of the
internal force t along the same direction; it is therefore now evident that the contact occurs without
force in the direction tangent to the curve and that slipping is not prevented. On the other hand, a
component of the stress is required on the surface of G for balancing cable forces in the plane normal to
the path, even in the absence of external forces. This provides a distribution of forces which has a
reactive nature for the cable; they arise due to the presence of the elastic constraint constituted by the
path embedded in the deformable body and are not deducible from the cable deformation but from
equilibrium only. In a similar way, the condition arising at the curve ends permits evidencing the forces
that ensure equilibrium at the anchorages.

3.1. Linearized theory

In the numerical solution of the non-linear equations and in numerous situations of interest in
engineering, particular attention is dedicated to the linear problem that can be derived from the previous
theory by assuming that the motion develops in the neighbourhood of an assigned balanced
con®guration and by assuming that this neighbourhood is su�ciently small to make a formulation
linearized with respect to the displacement, acceptable (incremental problem ). Such a treatment makes
the dependence of the cable deformation linear on the kinematical descriptors and this may also help
comprehension of the problem. More precisely, in the examined case the reference con®guration is
chosen to coincide with the known balanced con®guration and it is assumed that the norms of
u(Xi;t )=pÿP, x(r;t )=aÿr and their spatial derivatives are smaller than a parameter E; the linear theory
developed is such as to coincide with the exact theory when E 4 0 and such as to di�er from the exact
theory within an error bounded by E 2.
The linearization of the cable deformation Eq. (13) furnishes the following relation, linear with respect

to u and x (hu=hpÿH):

r � R� hu�r� � R,rx� o�E�, �28�
where the term hu,Zx, proportional to E 2, has been neglected. The written hu (r ) denotes that the
displacement ®eld hu, de®nite on the set IZ of the curvilinear abscissa of the curve H, is evaluated at
x=0 and, therefore, at Z=a=r. From the previous relation, the deformation expression can be deduced
in the form

r,r ' R,r � hu,Z�r� � x,rR,r � xR,rr: �29�
Three terms contribute to the cable strain. These are related to the path strain hu,Z, the cable stretch

x,r along the tangent direction R,r and the cable slip x which furnishes a component normal to the
curve and proportional to the path curvature.

In the examined con®guration, a known stress ®eld T0(Xi ) is present on the body (T0 denotes the
Cauchy stress tensor) and a ®eld of known traction force t0(r )=t0(r )E(r ) is present along the cable.
The stresses on the body and the forces on the cable are balanced with each other and balance the
external actions existing in the reference con®guration, denoted by b0, f0 and b0. The linearization of the
materials constitutive laws in the neighbourhood of these stress states furnishes the following relations at
the points (Xi ) of the body and r of the cable

ÅS�ru� ' T0 � Cru �30�
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and

t�hu,Z�r�,x,x,r� ' t0E� c�aÿ 1�E� t0�Åeÿ E�, �31�

where the fourth order tensor C acts on the symmetric part of Hu and denotes the derivative 2@ ÅS=@C
evaluated at C=I while the scalar c denotes the derivative dt/da evaluated at a = 1. To complete the
description, it is necessary to determine the expressions of (a ÿ 1) and �Åeÿ E� when the deformation
tends to zero. By recalling the de®nition of a=|r,r|/|R,r| and linearizing, it becomes possible to deduce
the following expression:

aÿ 1 ' �hu,Z�r� � x,r � R,r � xR,rr� � E=jR,rj � �eÿ E� � E, �32�

where it can be observed that, in the linear theory, stretch is furnished by the tangential component of
the unit vector deformation. However both the body deformation, the slip and its derivative contribute
to (a ÿ 1), even if the contribution due to slip appears only if the parametrization is not normal. The
previous expression can be made more explicit by introducing the notations vt=(E 
 E)v and vn=(IÿE

 E)v to respectively denote the components of a vectorial ®eld v on Ir in the tangent direction and the
component lying on the plane orthogonal to the tangent. This leads to the following equivalent
expression of Eq. (32):

aÿ 1 '
���ht

u,Z�r�
��� jR,rjx,r �

���R,trr

���x�=jR,rj: �33�

The in®nitesimal variation of the tangent versor is described by the relation

Åeÿ E ' �Iÿ E
 E��hu,Z�r� � x,rR,r � xR,rr�=jR,rj � �Iÿ E
 E��eÿ E�: �34�
In this case, it is the component of (eÿE) normal to the path that acts. The components of hu,Z (r )

and R,rr orthogonal to the curve provide some e�ects while the term related to the derivative x,r is
annihilated by the projector IÿE
 E, so that only the body deformation and cable slipping may provide
a variation of orientation of the traction force. By introducing the previous notation, the expression
assumes the form:

Åeÿ E ' ÿhn
u,Z�r� � xR,nrr

�
=jR,rj: �35�

The expressions obtained for kinematical and dynamical quantities in the linear theory can be used
for writing the balance condition in terms of the unknown functions u and x. By recalling that the initial
stresses are balanced, it is possible give the following form to the problem:

h�ruT0 � Cru�,r ÃuiO � hm0� Èuÿ b� b0�, ÃuiO ÿ hf ÿ f0, Ãui@OS
� h�t0ÿhn

u,Z�r�

� xR,nrr
�
=jR,rj,

�
hn
û,Z�r� � x̂R,nrr

�
iIr � hc

���ht
u,Z�r�

��� x,r �
���R,trr

���x�=jR,rj,
��ht

û,Z�r�
��� jR,rjx̂,r

�
���R,trr

���x̂iIr � hm0� Èhu�r� � �xR,r ÿ b� b0�,�hû�r� � x̂R,r�iIr

�b 8� Ãu,x̂� 2 V; 8t 2 �0,1�: �36�

The linear formulation furnishes a bilinear form q�u,x; Ãu,x̂�:V� V4R that can be decomposed as the
sum q=qf+qm+qc+qt where qf is related to the external force f, b, b; qm contains the inertial terms m0

and m0; qc collects the terms related to the constitutive functions C and c, and qt collects the terms
related to the balanced stresses T0 and t0 existing in the reference con®guration. The bilinear form qc is
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usually positive de®nite while qt may be non positive de®nite and can produce unstable motions in the
energy norm, i.e. with respect to the Liapunov functional

V�u,x;t� � hm0 Çu, ÇuiO � hm0 Çr,ÇriIr � hCru,ruiO � hc�aÿ 1�,�aÿ 1�jR,rjiIr � hruT0,ruiO
� ht0� �eÿ E�,� �eÿ E�jR,rjiIr :

�37�

4. Massless homogeneous cable

It is now assumed that the mass m0 of the cable is null, so that the previous external and inertial
forces on the cable do not provide e�ects. It is also assumed that the cable is homogeneous and,
consequently, the function o(a ) expressing the elastic energy per unit length is the same for all the
points r. Furthermore, it is assumed that o(a ) is convex and t(a ) is thus monotone.

This situation has particular relevance because often in engineering applications, the mechanical
characteristics of the cable are constant along it and so much better than the mechanical characteristics
of the three dimensional body as to permit adopting cables having a mass negligible with respect to the
body mass. Qualitative considerations of the behaviour of this system with massless cable can be
deduced from the analysis of the static case discussed in Dall'Asta, 1995 and are not repeated here. The
aim of this paragraph is to evidence the link and the di�erences between the more general theory of the
previous paragraph and this particular case.

The local balance equation of the cable in the direction tangent to its path, determined in advance
integrating by part in the case of test functions â, now leads to the following condition:

t,r � e � �o,aaa,r Åe� o,a Åe,r� � Åe � 0 �38�
from which, taking into account that Åe is a unit vector and o is convex, it can be deduced that the
condition a,r=0 must also be veri®ed. Therefore, the assumption of the absence of mass and
homogeneity for the cable, together with the previous condition of frictionless contact implicitely
expressed by the balance condition, immediatly leads to a reduction of the deformation space to its
proper subspace in which the cable strain is homogeneous. This also permits the assertion that the
potential elastic energy contained in the cable is constant along the cable, even if the internal force t
may vary in direction, and can be deduced simply by multiplying the initial length by the energy density
corresponding to the constant strain a.

The deformations subjected to the stronger constraint of homogeneous strain

a,r�r;t� � 0 �39�
will be analized in detail. Firstly, it follows from Eq. (39) that a must coincide with its mean value and
the latter may be deduced from the ratio between the total length

lp � gp�s� �
�s
0

jhp,zjdz �40�

of the path in the deformed con®guration and the total length

L � L�s� �
�s
0

jH,zjdz �41�

of the path in the reference con®guration, where both the quantities can be derived from the body
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con®gurations only. In conclusion, a does not depend on r and has the form

a�t� � lp

L
: �42�

The functional dependence of the cable local strain on the global body deformation now becomes
more explicit than in the general case (Eqs. (11) and (12)).

However, the mean aspect making the massless case substantially di�erent from the case analyzed in
the previous paragraph is that it is no longer necessary to introduce function a(r;t ) to describe the
system deformation because the slipping of the cable is not a�ected by any external force and the cable
deformation can be completely determined from the the body deformation only, as will be shown in the
sequel. In particular, in order to provide the ®nal position of each cable point r, it is recalled that in
paragraph 2, the function gp(Z ) was introduced. This measures the length of the path linked to the body
from the material point (Hi(0)) to (Hi(Z )), in the deformed con®guration, its derivative satis®es the
inequality gp,Z > 0 and the function is invertible. The homogeneity of the strain ensures the equality of
the two ratios gp(Z )/lp and L(r )/L for each cable material particle r lying at the point hp(Z ) of the curve
H, so that the function lr(r ) now depends on p only and coincides with the function lp(r )=a(t )L(r ),
which provides the following relation:

Z � a�r;t� �
�
gÿ1p  lp

�
�r� �43�

between the cable points and the body curve points. It becomes possible to reconstitute the position of
each cable point by means of the relation

r�r;t� �
�

hp gÿ1p  lp
�
�r� r 2 �0,s� �44�

and the complete kinematic description of the system is ®nally obtained on the basis of the function p
only.

The global balance conditions may now be stated by following the previous process and assuming as
admissible deformations only those providing homogeneous strain in the cable. It would be possible to
write the equilibrium condition simply by replacing a with the previously de®ned function Eq. (43), but
this is not convenient because it is not an easy matter to derive this from the deformation p. However,
the use of gÿ1p can be avoided altogether by evaluating the integral of the scalar product between t � t�e
and r,r��hp gÿ1p  lp�,r directly with respect to the body curve parameter Z instead of with respect to
the cable material co-ordinate r, taking into account that lp,r dr=gp,Z dZ. The form of the balance
condition particularly enjoys this position while the cable deformation, that does not explicitly appear,
can be equally reconstituted once p is known, via gÿ1p , even if this is not very interesting because the
most interesting design parameters are the cable internal force and strain which are both related to a
only. The balance condition at the instant t in which the deformation p is present, has the following
expression:

hS,r ÃpiO � hm0� Èpÿ b�, ÃpiO ÿ hf � Ãpi@Os
� t�a�

�s
0

Ågp � hp̂,Z dZ � 0

8 Ãp 2 V;8t 2 �0,1�:
�45�

The latter makes it evident that the dual entity of the force t, constant along the cable, is also a
constant quantity which coincides with
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â � 1

L

�s
0

Ågp � hp̂,Z dZ �46�

expressing the cable strain variation provided by Ãp on the space tangent to the constraint at p and the
term concerning the cable can also be simply furnished by the product tâL: The latter is a product of
functionals of the body deformation and is now not required to integrate quantities varying along the
cable, like the vectors t and r,r in Eq. (22).

4.1. Linearized theory

As in the previous case, here again it is interesting to state the linear equations describing in®nitesimal
motions near an assigned balanced con®guration. The procedure follows the same steps, so that the
reference con®guration is chosen so as to coincide with the known con®guration, the deformation is
denoted by means of the position u(Xi;t )=pÿP, x(r;t )=aÿr and the linearized theory is obtained by
assuming that u, x and their derivatives are small. It is not necessary to introduce the function gÿ1p and it
is possible to continue independently from the results of the previous paragraph, starting directly from
Eq. (45). In the range of a linear approximation, the module t of the force t assumes the expression

t ' t0 � c�aÿ 1� �47�
with

�aÿ 1� ' 1

L

�s
0

hu,Z �G dZ �48�

while the linearization of the variation of the functional â in the neighbourhood of the origin furnishes

â ' 1

L

�s
0

G � hû,Z dZ� 1

L

�s
0

�IÿG
G�hu,Z � hû,Z

jH,Zj
dZ: �49�

By using the same notation used previously for denoting tangential and normal components along the
path traced by the cable, it is possible to derive the following ®nal formulation:

hruT0 � Cru,r ÃuiO ÿ hm0� Èuÿ b� b0�, ÃuiO ÿ hf ÿ f0, Ãui@Os
� c

L

�s
0

��ht
u,Z
�� dZ

�s
0

��ht
û,Z
�� dZ

� t0

�s
0

hn
u,Z � hn

û,Z

jH,Zj
dZ

�b 8� Ãu,x̂� 2 V; 8t 2 �0,1�: �50�

5. Application

The proposed formulation can be used in analyzing structural problem, usually concerning rods,
plates or shells, by introducing suitable constrained kinematical models for the solid. The following
application examines a system consisting of a rectangular plate containing a cable lying on the middle
plane and parallel to one side, in order to analyze the consequences of cable stretching on vibration
modes, in the range of small deformations (Fig. 2). This technique is used to reduce tensile stresses
caused by bending actions on the plate and the case considered permits demonstrating some qualitative
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aspects despite its simplicity. The modal analysis of this system is interesting because it permits the
evaluation of the real traction force existing in the cable via non-destructive tests.

The plate is a prismatic solid occupying the region O={XaAa+X3A3; a=1,2; Xa $ [0,D1]� [0,D2]; X3 $
[ÿd/2,d/2]} in the reference con®guration. The curve H={X1=Z, X2=s, X3=0; Z $ [0,D1]} is de®ned on
the body and traces the following path in the reference con®guration

H�Z� � Hi�Z�Ai � ZA1 � sA2 Z 2 �0,D1�: �51�
Its derivative is furnished by H,Z (Z )=G(Z )=A1. In the reference con®guration, an internal force t0

acts on the cable. The parameter s, de®ning the position of the cable, is often designed for balancing, or
reducing, the bending stress induced by external action. The following applications analyze the
simpli®ed situation in which the stress ®eld on the body, produced by external forces and interaction
with the cable, consists of an uniform compressive stress T0=ÿt0/dD2(A1
A1); this situation may occur
if the plate is a portion of a larger structure, e.g. a beam web between sti�enings, or a rigid apparatus
providing equilibrium is posed at the sides X1=0, X1=D1.

The in®nitesimal motions are analyzed describing the behaviour of the plate by means of the
following displacement ®eld, valid for a transversely isotropic material internally constrained by the
condition Sym(Hu)�(Ai
A3)=0 (i=1,2,3) (see Podio-Guidugli, 1989):

u�Xa,z;t� � ÿX3rv�Xa;t� � v�Xa;t�A3, �52�
where v denotes the transversal displacements of the middle plane (X1,X2,0) and its gradient is the vector
v,aAa (repeated indices denote summation). The expressions of the displacement gradient and its
symmetric part are the following:

ru � ÿX3rrv� �A3 
 rvÿ rv
 A3� �53�
and

Sym�ru� � ÿX3rrv, �54�
where HHv=v,ab(Aa
Ab ).

Such a displacement ®eld maps H into the curve

H�Z� � hu�Z� � ZA1 � sA2 � v�Z,s;t�A3 �55�
while the term hu,Z(Z ) assumes the following form:

hu,Z�Z� � v,1�Z,s;t�A3: �56�

Fig. 2. Geometry of the plate with internal cable.
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The material forming the plate is homogeneous; E is its normal elastic modulus in the plane X1ÿX2

and n; the corresponding Poisson modulus. Furthermore, J denotes the geometric quantity d 3/12 and
B=EJ/(1ÿn 2). The displacement model considered provides the following expression for the bilinear
form (50) (hu was made explicit by Eq. (56)):

B

�D1

0

�D2

0

�v,11v̂,11 � v,22v̂,22 � 2n�v,11v̂,22 � v,22v̂,11� � 2�1ÿ n�v,12v̂,12�dX1 dX2

ÿ t0
J

dD2

�D1

0

�D2

0

�v,11v̂,11 � v,12v̂,12 �
h

J
v,1v̂,1�dX1 dX2 �

�D1

0

�D2

0

m0 d �vv̂ dX1 dX2

� t0

�D1

0

v,1�Z,s;t�v̂,1�Z,s�dZ

�b8v̂ 2 V; 8t 2 �0,1�: �57�

The lack of the term related to the cable sti�ness c is due to the particular situation analyzed here,
where the path is rectilinear and the kinematical internal constraint of the plate prevents axial strain in
the middle plane.

The case of boundary conditions preventing displacements in the direction of A3 along the
sides parallel to the X2-axis is considered. The solution can be sought in the form v = exp(iyt )f(Xa )
where f can be approximated by means of a sine series for X1 and a Legendre series for X2.
The numerical results concern a plate characterized by the following parameters: d = 0.2 m, D2=20d,
E=2.5� 1010 N/m2, m0/ED2d=8.3� 10ÿ8, n=0.2.

Figs. 3 and 4 report the ®rst ®ve periods obtained for di�erent values of the cable force, expressed by
the non-dimensional ratio t�=t0/ED2d, corresponding to the plate strain due to the compression. The
results are reported in terms of ratio between the period t=2p/y corresponding to t� and the period t0
obtained in the absence of the cable. The results described in Fig. 3 have been obtained for a square
plate with D1/D2=1.0 while the results described in Fig. 4 have been obtained for a rectangular plate
with D1/D2=2.0. In both cases, two diagrams are reported; Fig. 3(a) and Fig. 4(a) refer to the case of
s = 0.0, i.e. to the case of a cable placed at the centre of the plate, Fig. 3(b) and Fig. 4(b) refer to the
case of an eccentric cable located at s=0.45D2.

Fig. 3. Variation of eigenperiods versus cable traction for a square plate.
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From the diagrams, it can be observed that the interaction between the stretched internal cable and

the compressed plate can produce very di�erent e�ects on modal properties. In particular, some

eigenperiods decrease while other ones increase. Furtermore, the in¯uence of the prestressing force does

not provide signi®cant in¯uence for all eigenperiods and some present a small variation. Larger

reductions of eigenperiods have been obtained in the case of an eccentric cable [Fig. 3(b) and Fig. 4(b)].

Such a di�erent behavior can be explained by observing the two terms of Eq. (57) related to the cable

force t0. The ®rst one, deriving from integration on the plate, is negative de®nite (every displacement

®eld v implies v,1 somewhere for the considered boundary conditions), so that it provides a reduction in

the sti�ness of the system. The second one, deriving from the cable, is only positive semi-de®nite and it

provides a sti�ening contribution only for those vibration modes involving displacement of the cable

path. For each vibration mode, such a sti�ning contribution, if it exists, can be larger or smaller than

the negative e�ect produced by the compressive stress on the plate and described by th ®rst negative

term; the corresponding eigenperiod consequently results shorter or longer than the eigenperiod

observed for the plate free from stress.

The dashed lines of Fig. 3(a) and Fig. 4(a) refer to the ®rst eigenperiod measured in the di�erent case

where the internal cable is not present and the compressive stress T0 in the plate is produced by an

external force or by the interaction with two parallel cables which run externally to the plate and are in

contact with the plate at the anchorages only.

In this case, the period of the ®rst vibration mode increases and the state of stress provides a more

remarkable e�ect. This occurs because the positive semi-de®nite term related to the internal cable is now

absent so that the system shows a totally di�erent behavior and all the eigenperiods become as large as

the stress increases, even if not all the eigenperiods are strongly in¯uenced as the ®rst one.

In conclusion, an internal slipping cable makes it possible to obtain a notable state of compressive

stress on the plate avoiding unacceptable reduction in sti�ness (and instability as limit case). The modal

properties of the system however change and eigenperiods may enlarge or reduce. The prediction of

such variations in not easy and depend, besides on the stress intensity, both on the shape of vibration

modes and on the path of the cable.

Fig. 4. Variation of eigenperiods versus cable traction for a rectangular plate with D1/D2=2.0.
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